
Assignment 3: Function Calls and Exceptions

15-411: Compiler Design
Alex Crichton (acrichto@andrew) and Ian Gillis (igillis@andrew)

Due: Thursday, October 9, 2012 (1:30 pm)

Reminder: Assignments are individual assignments, not done in pairs. The work must be all your own.

You may hand in a handwritten solution or a printout of a typeset solution at the beginning of lecture on
Tuesday, October 9. Please read the late policy for written assignments on the course web page. If you
decide not to typeset your answers, make sure the text and pictures are legible and clear.

Problem 1: Calling Conventions (15 points)

(a) The function on the next page is written in x86-64 assembly (with some syntactic liberties), and it
is a bit too concerned about preserving the calling function’s register values. Without modifying the
function’s “work” section, rewrite the function to remove as many of the “prologue” and “epilogue”
instructions as you safely can. You should also give the reasons why those instructions are unnecessary,
and why the remaining ones are necessary. You should also reduce the stack frame size to the amount
that is actually necessary for your new function.

(b) In addition to saving and restoring registers it doesn’t need to, the program is violating the x86-64
calling conventions. Explain how.

(c) There is nothing on an x86-64 processor actually enforcing the calling conventions, and there are a
couple reasons why you might be tempted to forgoe them. In some situations you could optimize
away a few instructions by ignoring them, or you might simply want to use the easier to remember
rule that r8 through r15 are the callee save registers. However, conventions usually exist for a good
reason. What would be the negative consequences of ignoring calling conventions in your compiler?
Are there any circumstances (in your compiler, or in general) when it would be okay to ignore calling
conventions?

1



// Prologue

sub 1337, rsp

mov rbx, 108(rsp)

mov rcx, 116(rsp)

mov rdx, 124(rsp)

mov rsi, 132(rsp)

mov rdi, 140(rsp)

mov rbp, 148(rsp)

mov r8, 156(rsp)

mov r9, 164(rsp)

mov r10, 172(rsp)

mov r11, 180(rsp)

mov r12, 188(rsp)

mov r13, 196(rsp)

mov r14, 204(rsp)

mov r15, 212(rsp)

// Work

mov 8, rax

mov rsi, rbp

add rdi, rbp

mov rbx, 0(rsp)

mov rbp, 8(rsp)

add 0(rsp), r8

sub 8(rsp), r8

add r8, rax

// Epilogue

mov 108(rsp), rbx

mov 116(rsp), rcx

mov 124(rsp), rdx

mov 132(rsp), rsi

mov 140(rsp), rdi

mov 148(rsp), rbp

mov 156(rsp), r8

mov 164(rsp), r9

mov 172(rsp), r10

mov 180(rsp), r11

mov 188(rsp), r12

mov 196(rsp), r13

mov 204(rsp), r14

mov 212(rsp), r15

add 1337, rsp

ret

2



Problem 2: Tail Call Optimization (20 points)

Tail call optimization is an optimization which can be applied wherever a function foo makes a call to a
function bar and then returns either nothing or the result of bar immediately afterward. (An important
special case of this is tail recursion, where foo and bar are the same function.) Because foo does nothing
with its local variables after the call to bar, it is safe to have bar overwrite the contents of foo’s stack frame
instead of creating a new one, and additionally save a somewhat costly ret operation. Consider the following
tail recursive x86-64 function:

foo:

sub 40, rsp

add 4, rdi

cmp rdi, rdx

je baztime

bartime:

call bar

add 40, rsp

ret

baztime:

call baz

mov rax, rdi

cmp rdi, rsi

jne footime

mov 34, rsi

footime:

call foo

add 40, rsp

ret

(a) Write down a tail call optimized version of the above program.

(b) Describe the process that a compiler would need to take to perform tail call optimization in general.

(c) There is an important benefit of tail call optimization in addition to increasing program speed. Can
you think of it? (If you think of multiple answers, feel free to write more than one, but please don’t
try the “shotgun” strategy of question answering.)

3



Problem 3: SSA and Neededness (25 points)

Recall from lecture that static single assignment form (SSA) is an intermediate representation in which each
variable is assigned to exactly once, though possibly by a φ function that selects among several possible
values. Consider the function on the following page.

foo(x, y) {

z <- x + y

s <- y

q <- 0

while (s != 0) {

s <- s - 2

if (s < 0) {

q <- 9

return q

} else if (s < 8) {

if (z < 5) {

x <- x + 1

z <- z * 2

continue

} else {

break

}

} else {

z <- 51 / z

}

}

return q

}

(a) Write down the control flow graph for this program and label the nodes (basic blocks).

(b) For each node, list what nodes are in its dominance frontier.

(c) Write down the control flow graph for the program after converting it to SSA form.

(d) Recall from Lecture 5 neededness analysis. How does performing neededness analysis change when a
program is in SSA form?

(e) Do neededness analysis on the above program, and write down a neededness-optimized control flow
graph for the program based on this.

4


