
15-411 Compiler Design: Lab 6 - Garbage Collection

Fall 2010

Instructor: Andre Platzer
TAs: Anand Subramanian and Nathan Snyder

Compilers due: 11:59pm, Thursday, December 2, 2010
Term Paper due: 11:59pm, Thursday, December 9, 2010

1 Introduction

The main goal of the lab is to explore advanced aspects of compilation. This writeup describes
the option of implementing garbage collection; other writeups detail the option of implementing
optimizations or retargeting the compiler. The language L4 does not change for this lab and
remains the same as in Labs 4 and 5.

2 Requirements

You are required to hand in three separate items:

• The working compiler and runtime system that implement optimizing transformations.

• A performance benchmarking framework, and tests.

• A term paper describing and critically evaluating your project.

2.1 Compilers

Your compilers should treat the language L4 as in Lab 5. Regardless of what flag is passed to your
compiler, you should only implement safe memeory semantics for the purpose of this assignment.

Garbage Collection

You have complete freedom which kind of garbage collector to implement. A garbage collector
will consist of the compiler proper and the runtime system. The interface from the compiled code
to the runtime system should be part of your design. Reasonable choices are a mark-and-sweep
or a copying collector, but even a conservative collector is acceptable. Incremental collectors are
significantly harder and should only be attempted if you already have a basic collector working.

Grading criteria includes:

1. Functional correctness is paramount. You should not mutate the heap in such a way as to
result in the incorrect execution of programs. Your compiler should continue to function

1



correctly, despite any changes to the binary interface you use to interface with the garbage
collector. You will be required to compile all of the tests accumulated throughout the semester
within 8 seconds and run them correctly within 15 seconds.

2. The absence of memory leaks comes second. A garbage collector that takes a whole lot of
processor time is not of much use if it cannot effectively collect parts of the heap that are no
longer referenced.

3. Performance is a distant third, and has a very minor effect on your grade. Optimizations to
garbage collectors require a significant amount of time. Therefore, we recommend that you
avoid premature optimizations.

2.2 Tests and Measurement Tools

You need to demonstrate that your garbage collector does not corrupt the heap, and does not leak
memory. To this end, feel free to search through all of the test cases that we have accumulated
through this semester for programs that are both realistic and usefully contrived to assemble a test
suite. You may find it useful to write contrived test cases designed specifically to ensure that your
garbage collector goes through several collection cycles without corrupting the heap or leaking any
memory. You will be graded on how well you test your garbage collector.

If you wish to test your collector for efficiency, please consult the handout for lab6opt for
guidelines on testing. Testing for efficiency is optional.

2.3 Term Paper

Your paper should follow this outline.

1. Introduction. This should provide an overview of your implementation and briefly summarize
the results you obtained.

2. Compilation. Describe the data structures, code, and information generated by the compiler
in order to support the garbage collector.

3. Runtime System. Describe the runtime system of the garbage collector, giving details of the
algorithms and also its implementation (most likely in C).

4. Testing Methodology. Describe the criteria based on which you selected and designed your
tests, and explain how you use them to verify the functionality of your garbage collector.

5. Analysis. Critically evaluate your collector and sketch future improvements one might make
to its basic design.

If you attempted any optimizations in your garbage collector or compiler intended for efficient
memory usage, follow the guidelines in the lab6opt handout to describe your optimizations.

The term paper will be graded. There is no hard limit on the number of pages, but we expect
that you will have approximately 5-10 pages of reasonably concise and interesting analysis to
present.

2



3 Deadlines and Deliverables

Project Proposal (due 11:59pm on Sat Nov 20)

Send an informal email to the course staff at 15411@symbolaris.com declaring whether you elect
to do this project for lab 6.

3.1 Compiler Files (due 11:59pm on Thu Dec 2)

There is no plan to automatically grade your compilers on autolab. Nevertheless, as for all labs,
the files comprising the compiler should be collected in a directory compiler/ which should contain
a Makefile. Important: You should also update the README file and insert a roadmap to your
code. This will be a helpful guide for the grader.

Issuing the shell command

% make l4c

should generate the appropriate files so that

% bin/l4c --safe <args>

will run your L4 compiler in safe mode with support for garbage collection. The command

% make clean

should remove all binaries, heaps, and other generated files.
Furthermore, you should modify the driver from lab 5 so that tests can suitably be linked against

the garbage collector. Your garbage collector will likely be a library that is to be dynamically linked
against compiled binaries – and your driver should take care to set the path for dynamic linking,
etc. If there are any special instructions we need to follow in order to be able to run the driver on
your compiler and test it, specify these instructions in your README file.

All your material must be committed into lab6gc in the same way that you submitted your
compiler in previous assignments.

3.2 Tests and Measurement Tools (due 11:59pm on Thu Dec 02)

In a directory called tests/, include all the tests that you selected or wrote for the purpose of
testing your garbage collector. If they are to be used in a different way than a vanilla L4 test, you
should include a README file explaining exactly how to use your tests.

If you also do any performance testing in the same vein as lab6opt (optional), include the
necessary files in bench/.

3.3 Term Paper (due 11:59 on Thu Dec 09)

Submit your term paper as a filed called <team>-gc.pdf via email to the course staff at 15411@symbolaris.com.

3



4 Notes and Hints

• Limit optimizations. Garbage collection is easier if fewer optimization are applied to the code,
especially where memory references are concerned. In order to concentrate on the garbage
collector it is probably a good idea to stay away from optimizations altogether.

• Apply regression testing. It is very easy to get caught up in the new functionality.

• Copying vs. mark-and-sweep collector. Experience in previous years indicates that a copying
collector is easier to implement for our language than a mark-and-sweep collector because the
data structures are simpler.

4


